0_2 /AIBN, FREE-RADICAL METHOD FOR THE STEREOSPECIFIC OXIDATION OF NUCLEOSIDE TRIALKYL PHOSPHITES: NEW PREPARATION OF THE INDIVIDUAL, DIASTEREOMERIC, ¹⁸0-LABELED THYMIDINE 3',5'-CYCLIC MONOPHOSPHATES.

Tadeusz M. Gaida, Alan E. Sopchik and Wesley G. Bentrude* Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

<u>Abstract</u>: An experimentally easy method for regio- and stereospecific introduction of isotopic $(^{18}$ O or 17 O) oxygen into phosphorus di- and triesters of biological interest is described and applied to 18 O-labeling of cTMP's.

Nucleoside 3',5'-cyclic monophosphates stereospecifically labeled with 180 or 170 in the exocyclic oxygen atoms attached to phosphorus¹ are most valuable substrates for the study of enzyme catalyzed reactions of cyclic nucleotides as shown by recent stereochemical investigations.² We report here a new method for the preparation of the diastereomerically pure 180 -labeled 3',5'-cyclic monophosphates of thymidine (cTMP's), IVa and IVb, via a free-radical chain process using 180 . The approach has the advantages of being simple and straightforward and also utilizing the oxygen isotope in its most economical form. Furthermore, the high stereo- and regiospecificities of the introduction of labeled oxygen and lack of side products suggest its application to the oxidation and 180 labeling of the trialkyl phosphite intermediates frequently used in oligonucleotide synthesis.³

The use of azobisisobutyronitrile (AIBN) to initiate the 0_2 oxidation of a wide structural variety of triesters of phosphorous acid to the corresponding phosphates in high yields was demonstrated earlier.⁴ In the present work we showed first of all that the reaction is nearly stereospecific by use of the cyclic methyl phosphites, <u>cis-I and trans-I</u>. [The cis and trans geometries (Me and t-Bu relationship) of the individual phosphites and their phosphate oxidation products had been assigned previously.⁵] Thus, a stirred 0.2 M benzene solution of <u>cis-I and trans-I</u> [cis/trans ratio 92/8 (PMR, <u>t</u>-Bu peaks)] containing ~5% AIBN, over which was maintained an atmosphere of 0_2 , was heated at 70°. Oxidation was complete in 3h, as shown by GLC, to give the product phosphates in cis/trans ratio 93/7 (GLC) in greater than 90% yield (31p NMR). Similarly, a 41/59 cis/trans ratio of phosphites yielded the phosphates in a 47/53 cis/trans ratio.

Results of the application of the method to the diastereomeric thymidine 3',5'-cyclic methyl phosphites⁶ (II, Scheme I) are compiled in Table I. The stereospecific, <u>retentive</u> nature of the oxidation at phosphorus is again evident.⁷ ³¹P NMR showed the oxidation to be nearly quantitative. The cis and trans designations refer to the relationship of the MeO and thymyl groups. <u>SCHEMEI</u>:

Table I. 02/AIBN Oxidation of Thymidine Nucleoside 3',5'-Cyclic Methyl Phosphite

Phosphite ratio, cis/trans ^a	Phosphate ratio, cis/trans ^a
44/56	45/55
20/80	20/80
17/83	17/83
14/86	13/87

^a31_P NMR integration.

Use of 99.6% 18 O₂ at one atmosphere yielded the diastereomeric 18 O-labeled methyl esters of thymidine 3',5'-cyclic monophosphate, III (Figure I). Mass spectroscopy demonstrated that the ci and trans methyl phosphates contained 96.3 and 97.8% 18 O, respectively. (From m/e = 319 and m/e 321 MS peaks in the unlabeled and labeled materials.) Figure I confirms by high-field 31 P NMR (109.2 MHz) the high percentage of 18 O incorporation in the methyl phosphates as well as the regiospecificity of the reactions. The 31 P peak of the cis diastereomer (31 P = -6.51, acetone-d₆) is that of the compound having 18 O incorporated in the phosphoryl oxygen. This resonance is isotope-shifted upfield from the very weak peak assignable to unlabeled material by the expected amount (4.2 Hz). 1a,c,8 An analogous pair of peaks is noted for the trans diastereomer (Maior resonance at 31 P = -4.74). In neither case is there seen a peak resulting from the Me 18 OP(16 O) product. This compound, arising from non-regiospecific introduction of 18 O, would appear about 1.2 Hz upfield of the 16 O/ 16 O product.⁸

The diastereomers of III are readily separated in a single pass by medium pressure liquid chromatography on SiO_2 with 97/3 CHCl₃/MeOH as elutant. A 300-500 mg scale reaction is easily handled. The individual diastereomer, IIIa or IIIb (Scheme I), is quantitatively dealkylated to

the <u>t</u>-BuNHMe salt of the ¹⁸0-labeled diastereomer of cTMP, IVa or IVb, on 20 h of reflux in <u>t</u>-BuNH₂ as solvent.⁹ Products IVa and IVb precipitate during reflux and are readily isolated by simple filtration in 90-95% yields based on the methyl phosphates. Only a single peak at $\delta^{31p} =$ -2.1 (D₂0) could be found in the ³¹P NMR spectrum of each of these diesters indicating that they are at least 95% pure. The overall yield of each isotopically labeled diester from starting phosphite II is >80%. The sequence of preparation is summarized in Scheme I.

Labeled ${}^{16}0/{}^{17}0/{}^{18}0/cTMP$'s can doubtless also be obtained by this route. One need simply use CH₃ 18 OH or CH₃ 17 OH in the alcoholysis⁶ of the phosphoramidite precursor to phosphite II followed by ${}^{17}0_2$ or ${}^{18}0_2$ oxidation. We have also applied the 0_2 /AIBN method to the trivalent nucleoside derivatives V¹⁰ and VI. Product oxides are formed cleanly and near-quantitatively.

The 18 O introduction is <u>experimentally</u> very easy and straightforward. The bulb containing 18 O₂ is fitted with a vacuum stopcock and connected using ground glass joints by way of a tee to a single-necked reaction flask. The benzene solution of phosphite to be oxidized and AIBN is thoroughly degassed by several conventional freeze-thaw cycles after which the reaction

apparatus is isolated from the vacuum, and the stopcock to the ${}^{18}O_2$ bulb is opened. The solution is then heated to 70°. The solubility of O_2 in benzene even at less than 1 atm of pressure is sufficient for the oxidation to proceed efficiently.

In addition to being an experimentally simple and very high yield process, the 0_2 /AIBN method allows the use of isotopic oxygen in its lowest-cost, molecular form. Both oxygen atoms of the molecule are utilized. Using ${}^{18}0_2$ and phosphite in 10/1 molar ratio we have run easily two successive oxidations from the same ${}^{18}0_2$ sample. The reaction is not much affected by the reduced 0_2 pressure, and clearly several more reactions could have been carried out. As evidence of this, the partial pressure of 0_2 in air at one atmosphere is sufficient to effect the efficient introduction of ${}^{16}0$. The method has the further advantage that removal of the potentially troublesome HI, byproduct from the usual I_2/H_20 oxidation, 3 is not necessary.

<u>Acknowledgment</u>: We gratefully acknowledge the support of this work by the National Cancer Institute of the Public Health Service, Grant CA 11045. The 109 MHz ³¹P spectra were obtained courtesy of Professor Martin P. Schweizer and Dr. A. Srinivasan, Department of Medicinal Chemistry, University of Utah, on a JEOL FX 270 spectrometer.

References:

- a) J.A. Gerlt, J.A. Coderre, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 4531 (1980); b) J. Baraniak, K. Lesiak, M. Sochacki, and W.J. Stec, <u>ibid.</u>, <u>102</u>, 4533 (1980); c) R.L. Jarvest, G. Lowe and B.V.L. Potter, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1142 (1980).
- J.A. Coderre, S. Mehdi and J.A. Gerlt, <u>J. Am. Chem. Soc.</u>, <u>103</u>, 1872 (1981); R.L. Jarvest and G. Lowe, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, <u>1145 (1980)</u>; J.A. Coderre and J.A. Gerlt, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>103</u>, 6594 (1980).
- See e.g.: a) M.D. Matteucci and M.H. Caruthers, J. Am. Chem. Soc., <u>103</u>, 3185 (1981); b) R.L. Letsinger and W.B. Lunsford, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 3655 (1976).
- 4. W.G. Bentrude, Tetrahedron Lett., 3543 (1965).
- 5. W.G. Bentrude and J.H. Hargis, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 7136 (1970); R.W. Warrent, C.N. Caughlan, J.H. Hargis, K.C. Yee and W.G. Bentrude, <u>J. Org. Chem.</u>, <u>43</u>, 4266 (1978).
- 6. G.S. Bajwa and W.G. Bentrude, <u>Tetrahedron Lett.</u>, 421 (1978). Phosphite II is made in >90% yield from V typically prepared in 20-25% yield directly from reaction of thymidine with $(Me_2N)_3P$.
- 7. The retentive nature of the AIBN/O₂ oxidation was further confirmed by comparison to products using N₂O₄ whose stereochemistry is well known (J.A. Mosbo and J.G. Verkade, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 4659 (1973)).
- 8. D.G. Gorenstein and R.G. Rowell, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 6165 (1980).
- 9. Method of D.J.H. Smith, K.K. Ogilve, and M.F. Gillen, <u>Tetrahedron Lett.</u>, 861 (1980).
- 10. Dr. Katalin Komives, unpublished results from this laboratory.

(Received in USA 7 July 1981)